
CSC 2224: Parallel Computer
Architecture and Programming
GPU Architecture: Introduction

Prof. Gennady Pekhimenko
University of Toronto

Fall 2019

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier
Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

https://www.youtube.com/watch?v=-P28LKWTzrI

https://www.youtube.com/watch?v=-P28LKWTzrI

What is a GPU?
• GPU = Graphics Processing Unit

– Accelerator for raster based graphics (OpenGL, DirectX)
– Highly programmable (Turing complete)
– Commodity hardware
– 100’s of ALUs; 10’s of 1000s of concurrent threads

3
NVIDIA Volta: V100

The GPU is Ubiquitous

4 [APU13 keynote]

+

“Early” GPU History
– 1981: IBM PC Monochrome Display Adapter (2D)
– 1996: 3D graphics (e.g., 3dfx Voodoo)
– 1999: register combiner (NVIDIA GeForce 256)
– 2001: programmable shaders (NVIDIA GeForce 3)
– 2002: floating-point (ATI Radeon 9700)
– 2005: unified shaders (ATI R520 in Xbox 360)
– 2006: compute (NVIDIA GeForce 8800)

5

Why use a GPU for computing?
• GPU uses larger fraction of silicon for computation than CPU.

• At peak performance GPU uses order of magnitude less energy per operation than
CPU.

6

CPU
2nJ/op

GPU
200pJ/op

Rewrite
Application

Order of Magnitude
More Energy Efficient

However….
Application must perform well

Agenda
• Three key ideas that make GPUs run fast

• GPU memory hierarchy

• Closer look at a modern GPU architecture (Nvidia’s Volta)

• Memory: higher bandwidth, larger capacity

• Compute: application-specific hardware

7

Why GPUs Run Fast?
• Three key ideas behind how modern GPU processing cores run code

• Knowing these concepts will help you:

1. Understand GPU core designs

2. Optimize performance of your parallel programs

3. Gain intuition about what workloads might benefit from such a parallel

architecture

8

Example Program: Vector Multiply-Add
• Compute v = a ∙ b + c (a, b, c and v are vectors with a length of N)

9

a

b

c

v

𝘅

＋

=

void mul_add (int N, float* a, float* b, float* c, float* v) {
for (int i = 0; i < N; i++) {

v[i] = a[i] * b[i] + c[i]
}

}

Single-core CPU Execution

1
0

mov R1, 0
START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

Single-core CPU Execution

1
1

… Instruction
Flow

madd stalled,
jump to the next

independent instruction

Can also be executed
out-of-order

through register renaming

mov R1, 0
START:

ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

Single-core CPU Execution

1
2

… Instruction
Flow

mov R1, 0
START:

ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

But what if we tell the hardware
these two blocks can be executed

in parallel to begin with?

Slimming Down

13

Idea #1:
Use increasing transistor count to add
more cores to the processor

… rather than use transistors to increase
sophistication of processor logic that
accelerates a single instruction stream (e.g.,
out-of-order and speculative operations)

Two cores (Two Elements in Parallel)

14

START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1

START:
ld R2, a[R1]
ld R3, b[R1]
ld R4, c[R1]
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1

Element x

Result x

Element y

Result y

Sixteen Cores

15

16 cores = 16 simultaneous instruction streams

Instruction Stream Sharing

16

Idea #2:
Amortize cost/complexity of managing an instruction
stream across many ALUs

SIMD processing!

128 Elements in Parallel

17

16 cores = 16 simultaneous instruction streams16 cores 𝘅 8 ALUs/core = 128 ALUs

What about Branches?

18

<unconditional shader code>
if (x > 0) {

y = pow(x, exp);
y *= Ks;
refl = y + Ka;

} else {
x = 0;
refl = Ka;

}
<resume unconditional shader code>

<unconditional shader code>
if (x > 0) {

y = pow(x, exp);
y *= Ks;
refl = y + Ka;

} else {
x = 0;
refl = Ka;

}
<resume unconditional shader code>

What about Branches?

19

<unconditional shader code>
if (x > 0) {

y = pow(x, exp);
y *= Ks;
refl = y + Ka;

} else {
x = 0;
refl = Ka;

}
<resume unconditional shader code>

What about Branches?

20

Not all ALUs do useful work!
Worst case: 1/8 peak performance

Terminology
• Instruction stream coherence (“coherent execution”)

• Same instruction sequence applies to all elements operated upon
simultaneously

• Coherent execution is necessary for efficient use of SIMD processing
resources

• Coherent execution IS NOT necessary for efficient parallelization
across cores, since each core has the capability to fetch/decode a
different instruction stream

• “Divergent” execution
• A lack of instruction stream coherence

2
1

SIMD Execution on Modern GPUs
• “Implicit SIMD”

• Compiler generates a scalar binary (scalar as opposed to vector instructions)
• But N instances of the program are *always running* together on the processor

i.e., execute(my_function, N) // execute my_function N times
• Hardware (not compiler) is responsible for simultaneously executing the same

instruction on different data in SIMD ALUs
• SIMD width in practice

• 32 on NVIDIA GPUs (a warp of threads) and 64 on AMD GPUs (wavefront)
• Divergence can be a big issue (poorly written code might execute at 1/32 the peak

capability of the machine!)

22

Dealing with Stalls on In-order Cores
• Stalls occur when a core cannot run the next instruction because of a dependency

on a previous long-latency operation

• We’ve removed fancy logic that helps avoid stalls

• No more out-of-order execution to exploit instruction-level parallelism (ILP)

• Traditional cache doesn’t always help since a lot of workloads are streaming
data

• But, we have a LOT of parallel work…

23

Idea #3: Interleave processing of many warps on a single core to avoid
stalls caused by high-latency operations

Hiding Stalls

24

Element 1…8 Element 9…16

1 2 3 4

Time
(clock cycles)

Hiding Stalls

25

Time
(clock cycles) Element 1…8 Element 9…16

1 2 3 4

Runnable

Hiding Stalls

26

Time
(clock cycles) Element 1…8 Element 9…16

1 2 3 4

Runnable

Runnable

Runnable

Runnable

Done!

Done!

Done!

Done!

Throughput Computing Trade-off

27

Time
(clock cycles) Element 1…8 Element 9…16

1 2 3 4

Runnable

Done!

Key idea of throughput-oriented systems:
Potentially increase runtime of one group, in order to increase
throughput of overall system running multiple groups.

During this time, this group is runnable, but it is not being executed by the
processor. (The core is running some other group.)

Storing Execution Contexts
• Consider on-chip storage of execution contexts a finite resource

• Resource consumption of each thread group is program-dependent

28

Execution Context Storage

Four Large Contexts (Low Latency Hiding)

29

Eighteen Small Contexts (High Latency Hiding)

30

Summary: Three Key Ideas
1. Use many “slimmed down cores” to run in parallel

2. Pack cores full of ALUs (by sharing instruction stream on multiple data)

3. Avoid latency stalls by interleaving execution of many groups of threads

• When one group stalls, work on another group

31

CPU v.s. GPU Memory Hierarchies

32

CPU:
Big caches, few threads per core, modest memory BW
Rely mainly on caches and prefetching

NVIDIA GTX 1080
(Pascal)

GPU:
Small caches, many threads, huge memory BW
Rely heavily on multi-threading for performance

GDD
R5

Thought Experiment
• Consider element-wise multiplication of two vectors a and b

• Assume vectors contain millions of elements
• Load input a[i]

• Load input b[i]

• Compute a[i] 𝘅 b[i]

• Store result into v[i]

• Three memory operations (12 bytes) for every MUL

• NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz)

• Need ~45 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)

33

a

b

v

𝘅
=

<1% GPU efficiency… but 4.2x faster than eight-core CPU in lab!
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will exhibit ~3% efficiency on

this computation)

Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.
No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for
application developers on throughput-optimized systems.

Bandwidth is a Critical Resource
Performant parallel programs will:
• Organize computation to fetch data from memory less often

• Reuse data previously loaded by the same thread

• Share data across threads through scratchpad (inter-thread cooperation)

• Access contiguous memory within the same warp (hardware managed memory
coalescing)

• Request data less often (instead, do more arithmetic: it’s “free”)

• Useful term: “arithmetic intensity” — ratio of math operations to data access
operations in an instruction stream

• Main point: programs must have high arithmetic intensity to utilize modern
processors efficiently

35

Memory Spaces in GPU

36

SM 1

…

SM n
SM 0

Compute Cores

Register File (fast) Shared Memory (med)

Device Memory (slow++)

Per thread Per thread block

L1 Cache (Slow)

All resident threads

L2 Cache (slow+)

On-chip:
- Register file

- Usage determined by compiler
- Spills go to local memory

- Shared memory, i.e. scratchpad
- Programmer managed
- Bank conflicts

- L1 cacheOff-chip:
- L2 cache

- Bandwidth filter for DRAM rather than
reducing latency as in CPUs

- Device memory (DRAM)
- Several spaces: global memory,

texture memory, local memory
- Different spaces have different caching policies

21B transistors
815 mm2

80 SM
5120 CUDA Cores
640 Tensor Cores

16/32 GB HBM2
900 GB/s HBM2

300 GB/s NVLink
*full GV100 chip contains 84 SMs

Modern GPU Architecture (Volta 2017)

37

Review #7
GPUs and the Future of Parallel Computing
Steve Keckler et al., IEEE Micro 2011

Due Nov. 11

38

https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

CSC 2224: Parallel Computer
Architecture and Programming
GPU Architecture: Introduction

Prof. Gennady Pekhimenko
University of Toronto

Fall 2019

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier
Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

