### CSC 2224: Parallel Computer **Architecture and Programming GPU Architecture: Introduction**

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

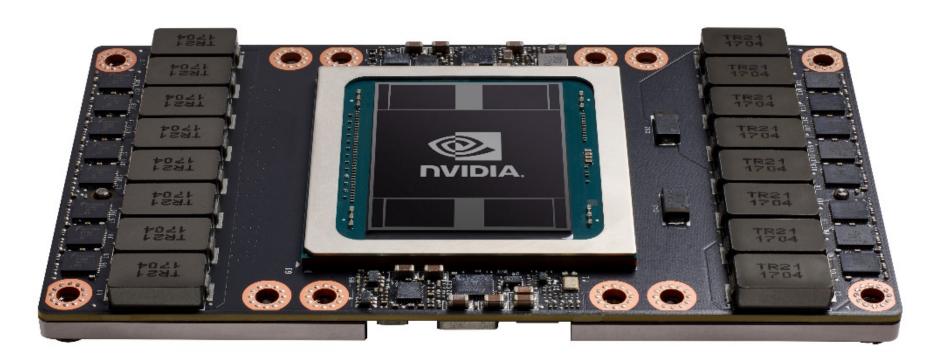
Prof. Gennady Pekhimenko University of Toronto Fall 2019



https://www.youtube.com/watch?v=-P28LKWTzrI

### What is a GPU?

- GPU = Graphics Processing Unit
  - Accelerator for raster based graphics (OpenGL, DirectX)
  - Highly programmable (Turing complete)
  - Commodity hardware
  - 100's of ALUs; 10's of 1000s of concurrent threads



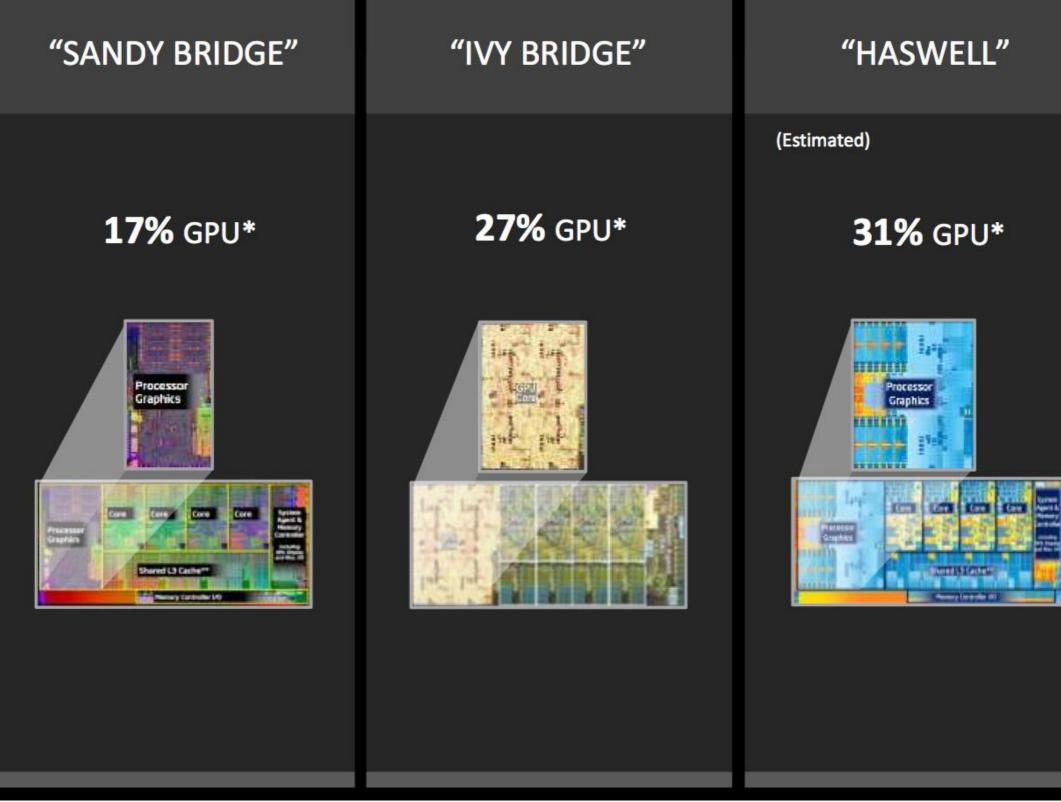
NVIDIA Volta: V100



3

### The GPU is Ubiquitous

### THE FUTURE BELONGS TO THE APU: **BETTER GRAPHICS, EFFICIENCY AND COMPUTE**

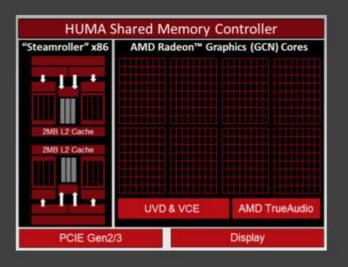


### [APU13 keynote]

### 

### 2014 AMD A-SERIES/CODENAMED "KAVERI"

### 47% GPU



### DELIVERS BREAKTHROUGHS IN APU-BASED:

### ▲ Compute

– (OpenCL<sup>™</sup>, Direct Compute)

### ▲ Gaming

– (DirectX<sup>®</sup>, OpenGL, Mantle)

### **Experiences**

- (Audio, Ultra HD, Devices, New Interactivity)

4

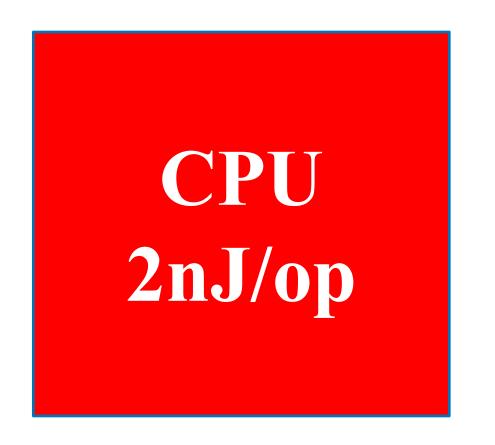
### "Early" GPU History

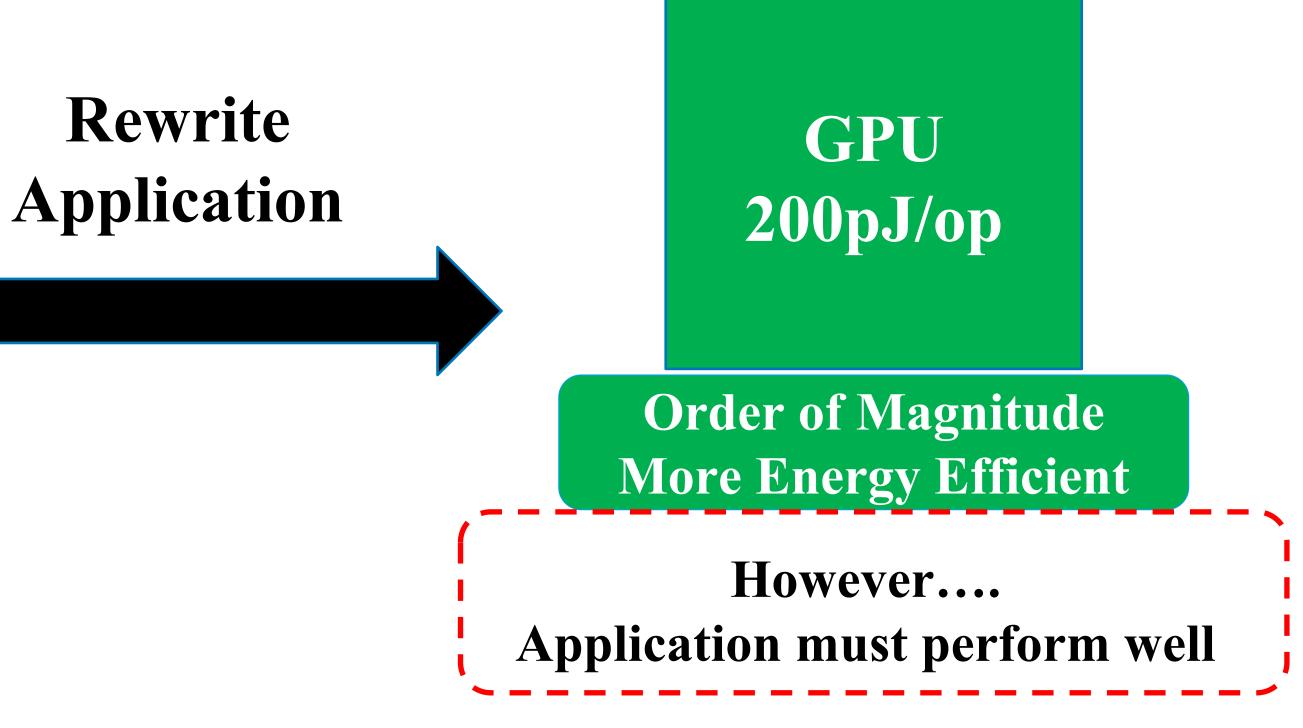
- 1981: IBM PC Monochrome Display Adapter (2D) - 1996: 3D graphics (e.g., 3dfx Voodoo)
- 1999: register combiner (NVIDIA GeForce 256)
- 2001: programmable shaders (NVIDIA GeForce 3)
- 2002: floating-point (ATI Radeon 9700)
- 2005: unified shaders (ATI R520 in Xbox 360)
- 2006: compute (NVIDIA GeForce 8800)



# Why use a GPU for computing?

- GPU uses larger fraction of silicon for computation than CPU.
- CPU.





• At peak performance GPU uses order of magnitude less energy per operation than



- Three key ideas that make GPUs run fast
- GPU memory hierarchy
- Closer look at a modern GPU architecture (Nvidia's Volta)
  - Memory: higher bandwidth, larger capacity
  - Compute: application-specific hardware

# Agenda

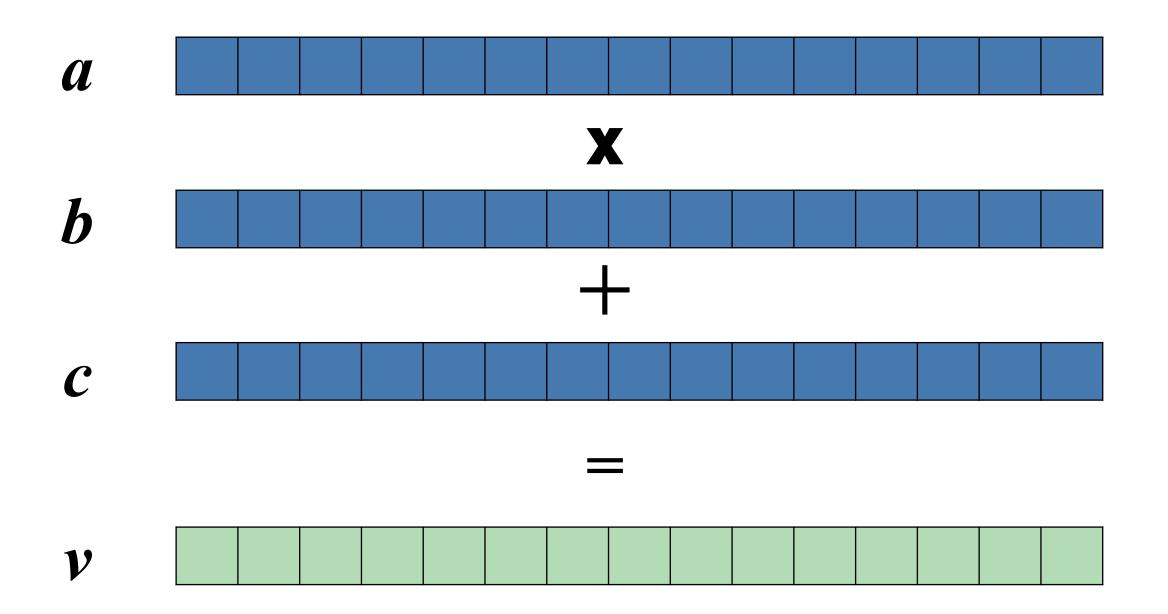
# Why GPUs Run Fast?

- <u>Three key ideas</u> behind how modern GPU processing cores run code
- Knowing these concepts will help you:
  - Understand GPU core designs
  - Optimize performance of your parallel programs 2.
  - 3. architecture

Gain intuition about what workloads might benefit from such a parallel

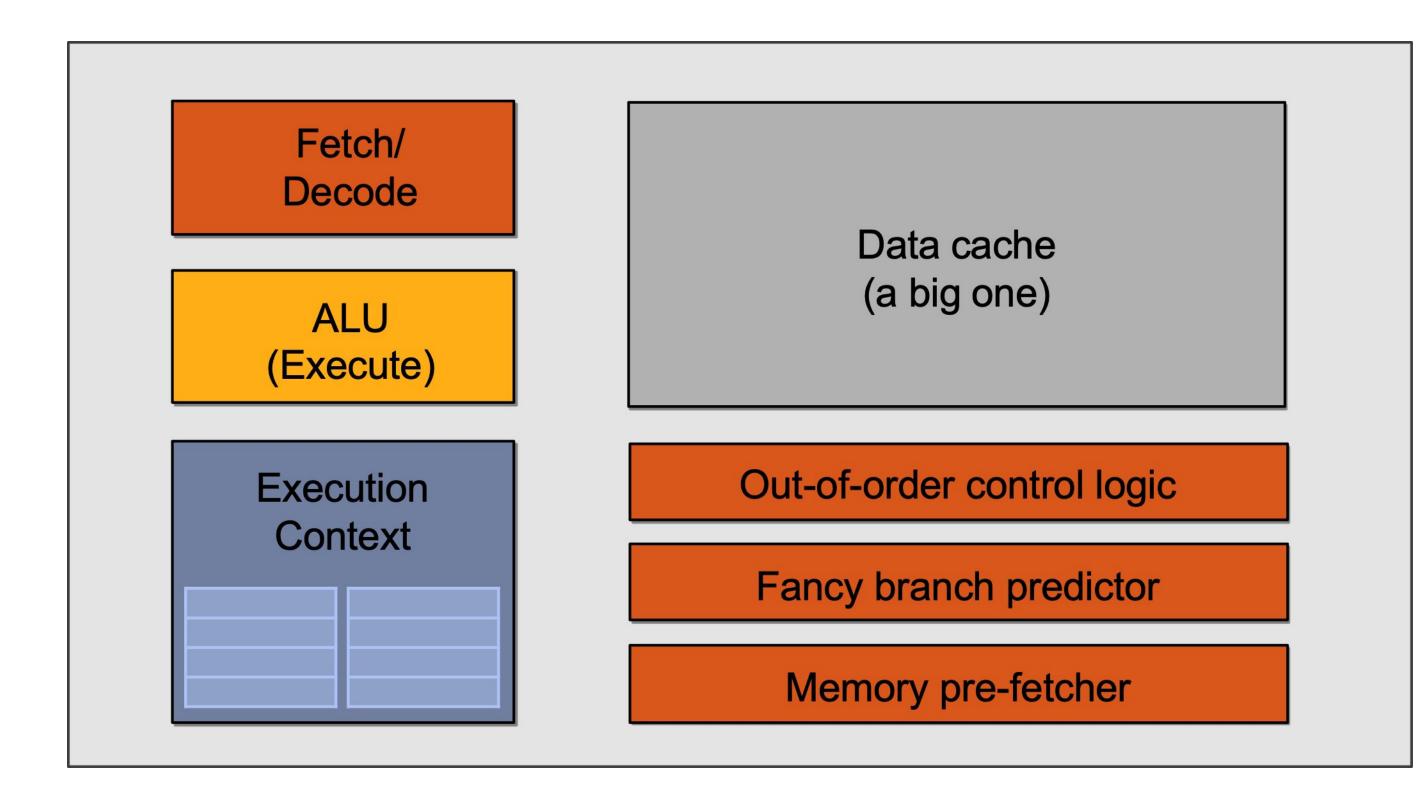
### Example Program: Vector Multiply-Add

• Compute  $v = a \cdot b + c$  (a, b, c and v are vectors with a length of N)



```
void mul_add (int N, float* a, float* b, float* c, float* v) {
    for (int i = 0; i < N; i++) {
         v[i] = a[i] * b[i] + c[i]
    }
```

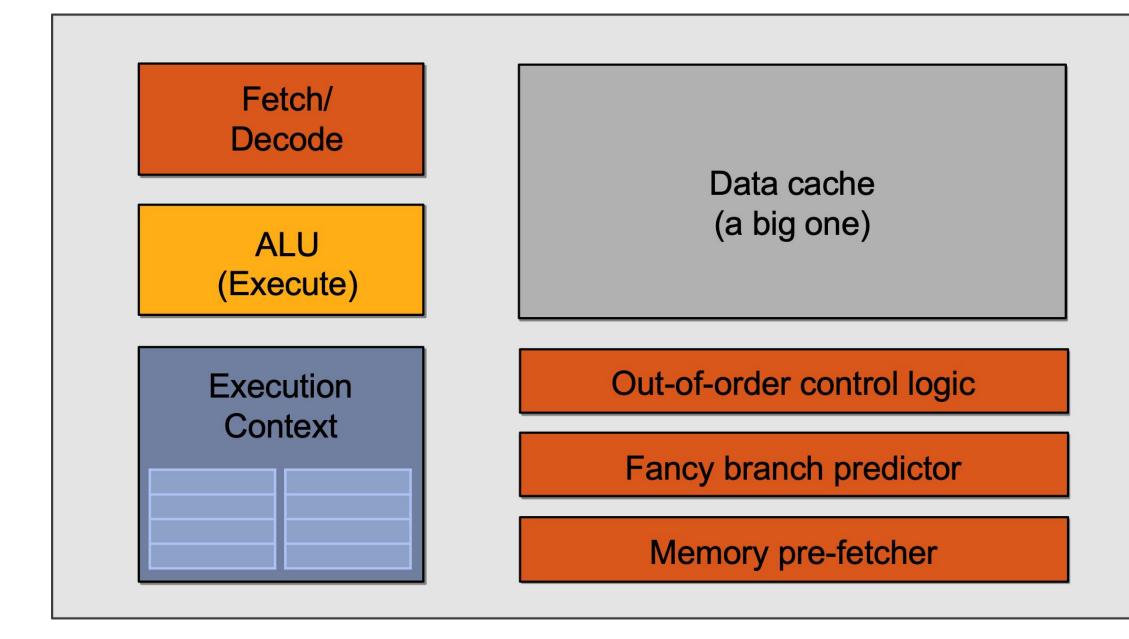
# Single-core CPU Execution



mov R1, 0 START: ld R2, a[R1] ld R3, b[R1] ld R3, b[R1] ld R4, c[R1] madd R5, R2, R3, R4 st R5, v[R1] add R1, R1, 1 bra START if R1 < N

# Single-core CPU Execution

1



madd stalled, jump to the next independent instruction

Can also be executed out-of-order through register renaming

mov R1, 0 **START:** ld R2, a[R1] ld R3, b[R1] ld R4, c[R1] madd R5, R2, R3, R4 st R5, v[R1] add R1, R1, 1 bra START if R1 < N **START:** ld R2, a[R1] ld R3, b[R1] ld R4, c[R1] madd R5, R2, R3, R4 st R5, v[R1] add R1, R1, 1 bra START if R1 < N

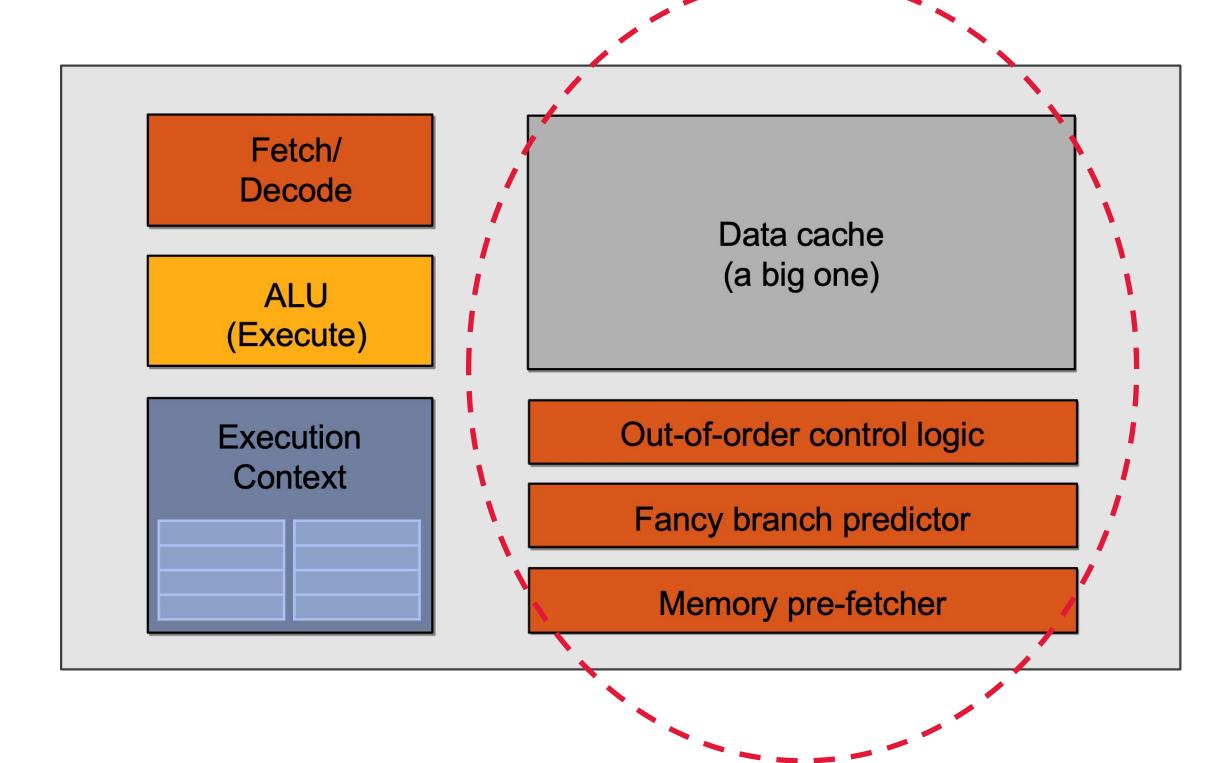
 $\bullet \bullet \bullet$ 

Instruction Flow



# Single-core CPU Execution

1



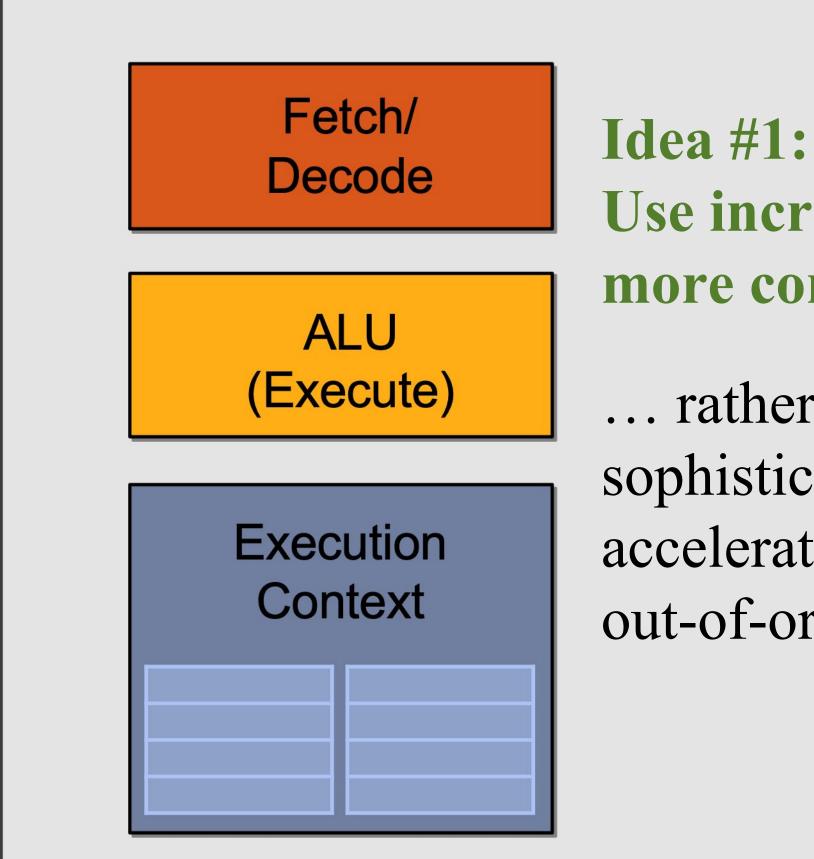
But what if we tell the hardware these two blocks can be executed in parallel to begin with?

mov R1, 0 **START:** ld R2, a[R1] ld R3, b[R1] ld R4, c[R1] madd R5, R2, R3, R4 st R5, v[R1] add R1, R1, 1 bra START if R1 < N **START:** ld R2, a[R1] ld R3, b[R1] ld R4, c[R1] madd R5, R2, R3, R4 st R5, v[R1] add R1, R1, 1 bra START if R1 < N

 $\bullet \bullet \bullet$ 



# Slimming Down



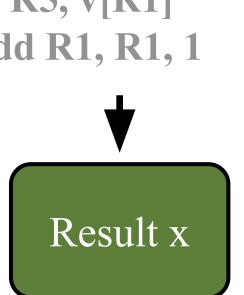
### Use increasing transistor count to add more cores to the processor

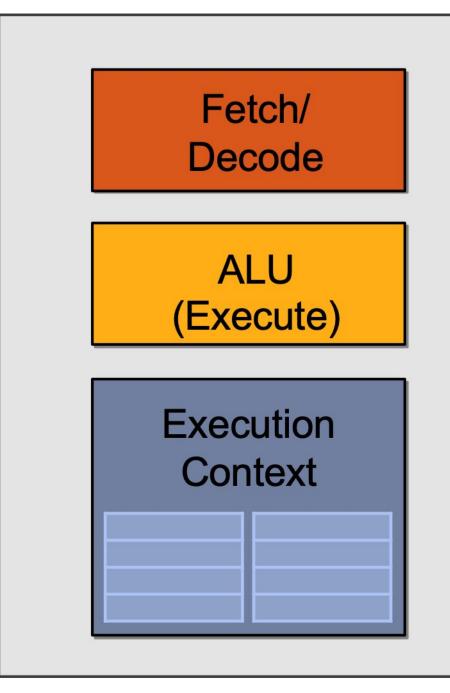
... rather than use transistors to increase sophistication of processor logic that accelerates <u>a single instruction stream</u> (e.g., out-of-order and speculative operations)

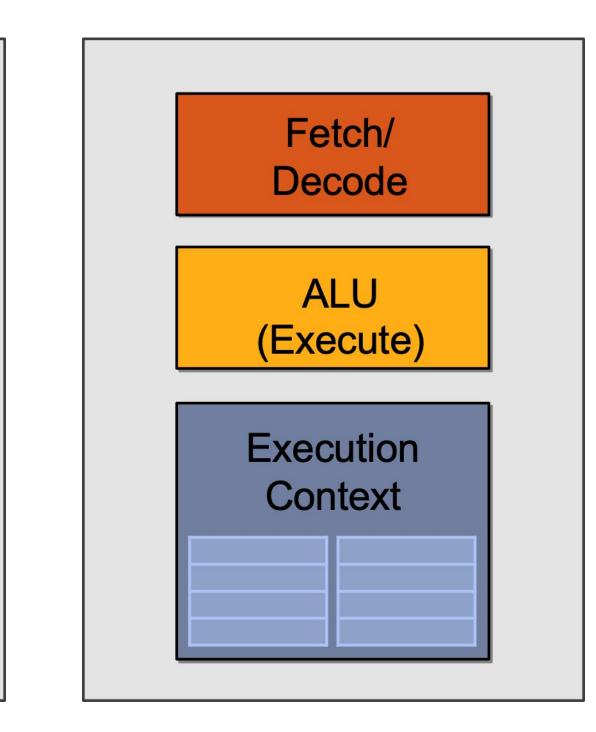
### Two cores (Two Elements in Parallel)



START: ld R2, a[R1] ld R3, b[R1] ld R4, c[R1] madd R5, R2, R3, R4 st R5, v[R1] add R1, R1, 1





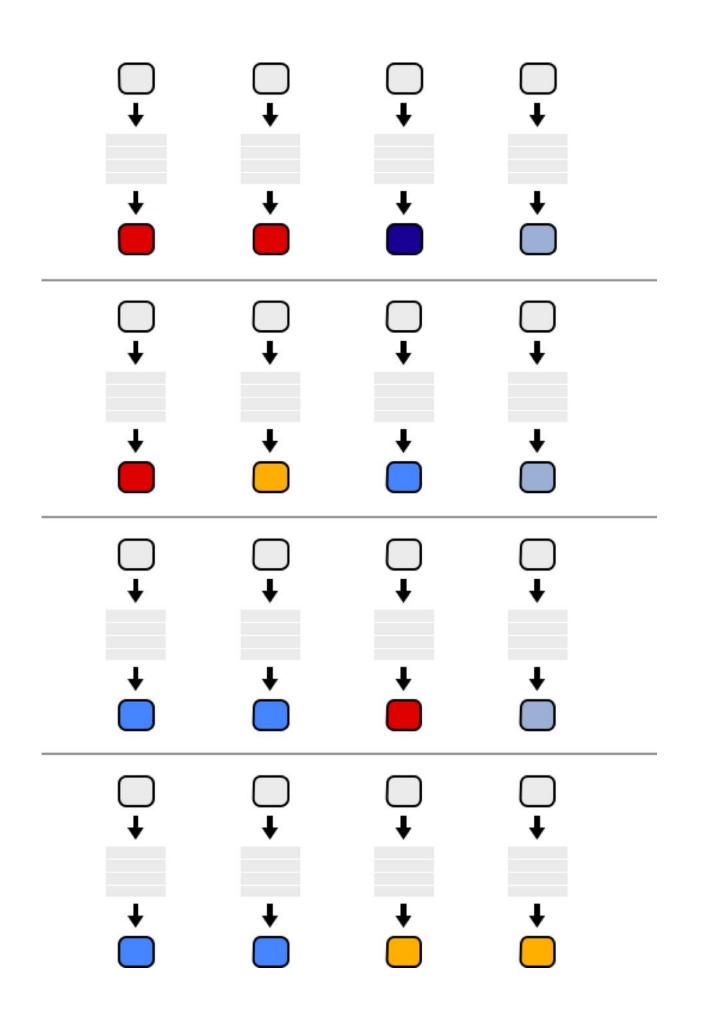


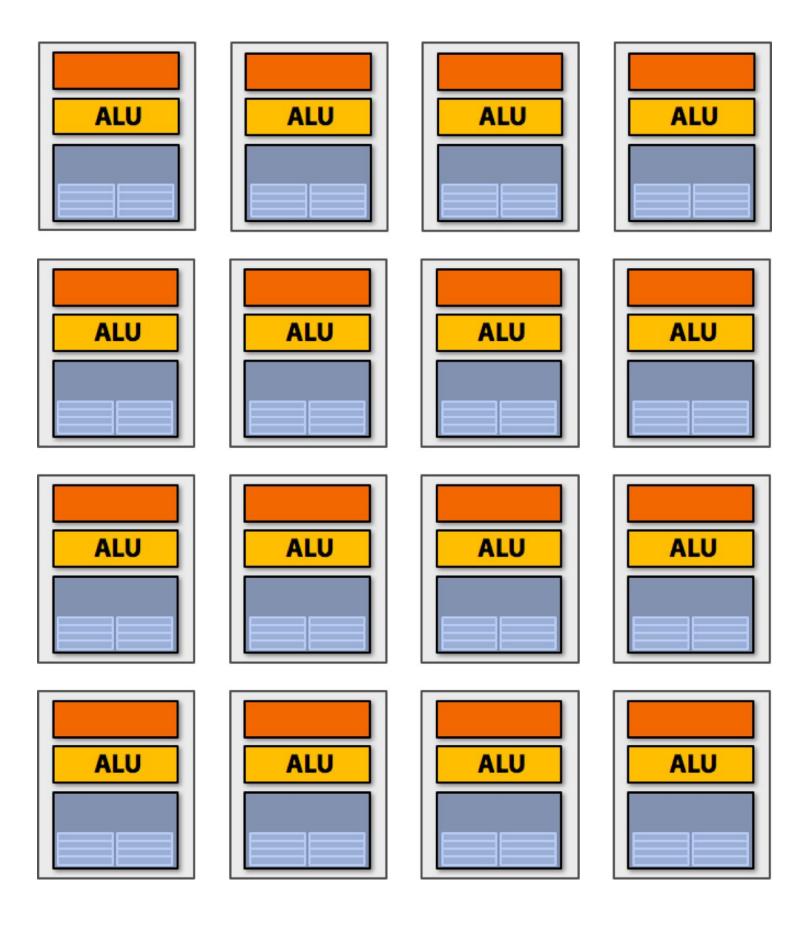
Element y

START: ld R2, a[R1] ld R3, b[R1] ld R4, c[R1] madd R5, R2, R3, R4 st R5, v[R1] add R1, R1, 1



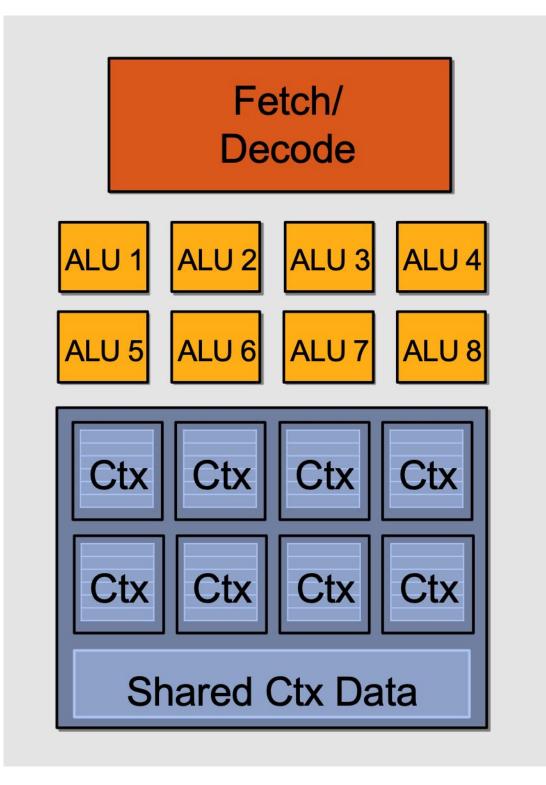
### Sixteen Cores





**16 cores = 16 simultaneous instruction streams** 

# Instruction Stream Sharing

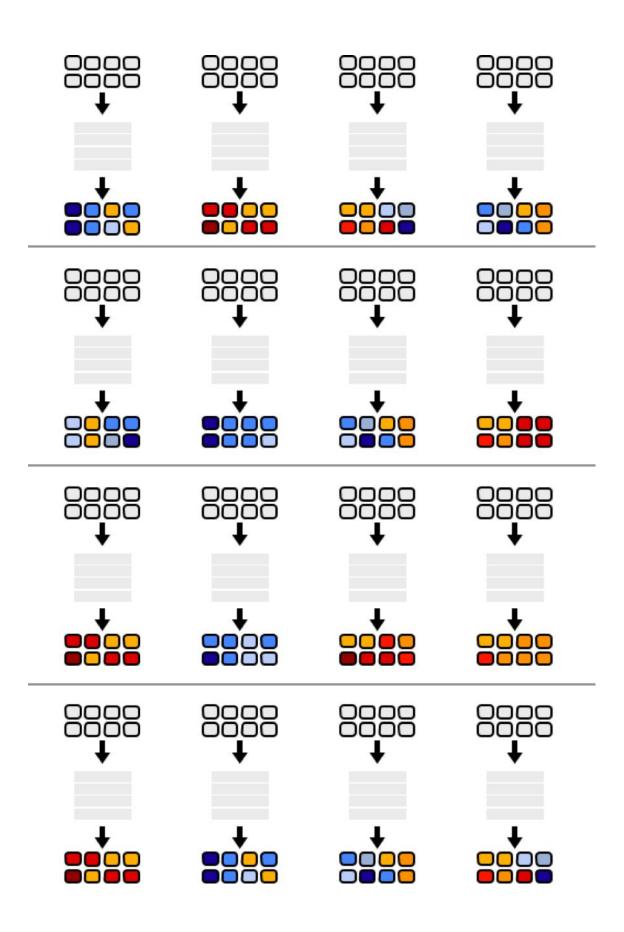


**Idea #2:** 

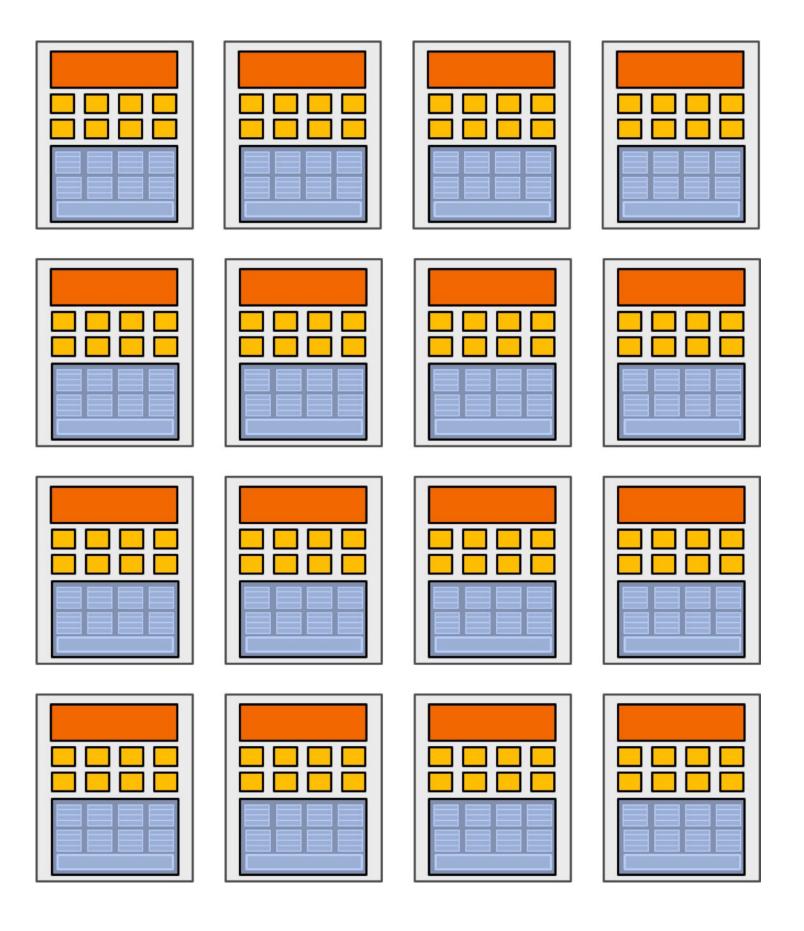
**SIMD processing!** 

### **Amortize cost/complexity of managing an instruction** stream across many ALUs

# 128 Elements in Parallel

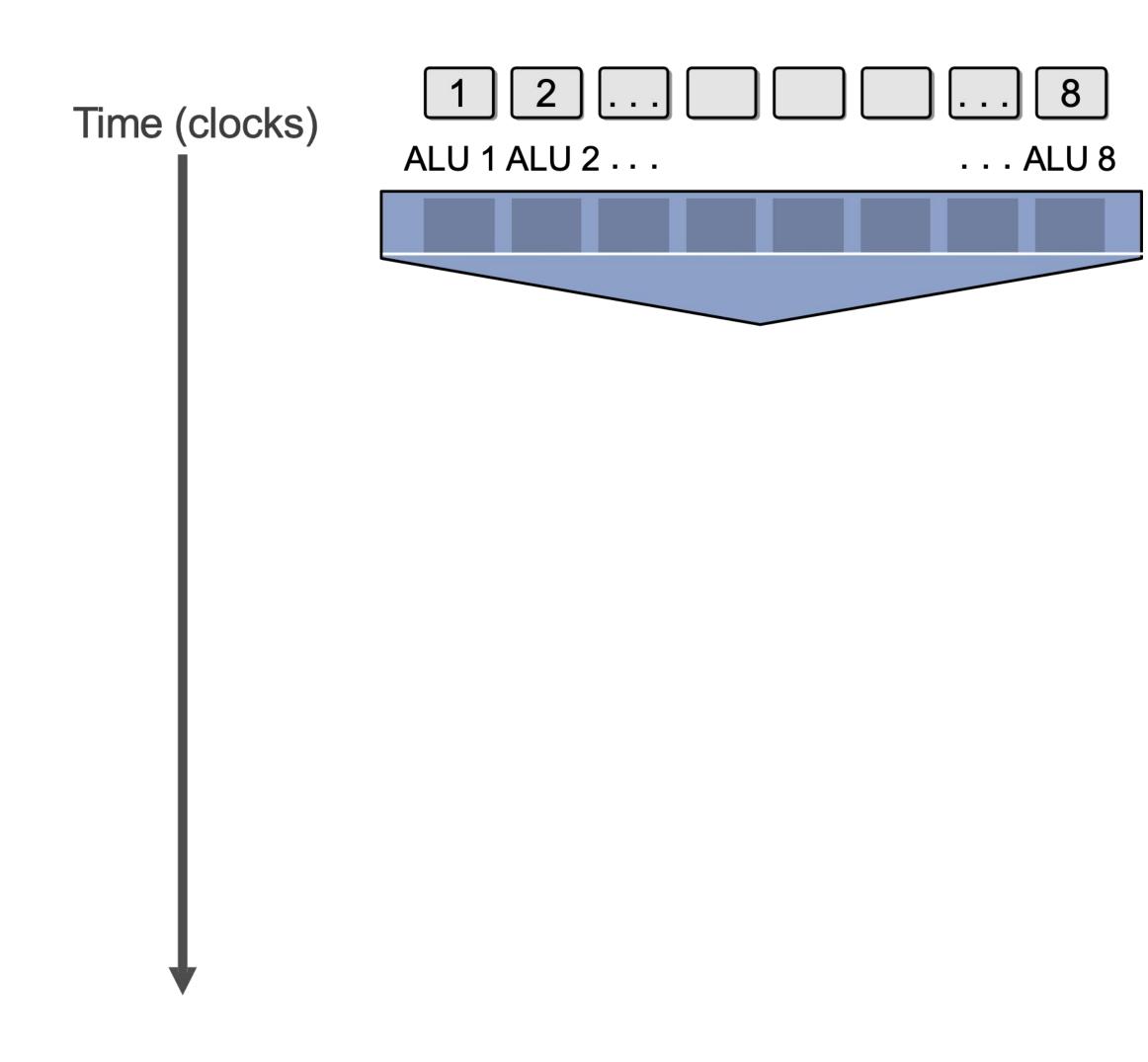


16 cores x 8 ALUs/core = 128 ALUs

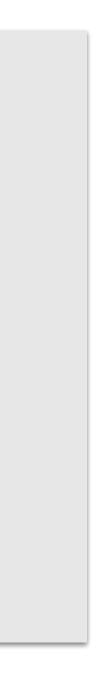


**16 cores = 16 simultaneous instruction streams** 

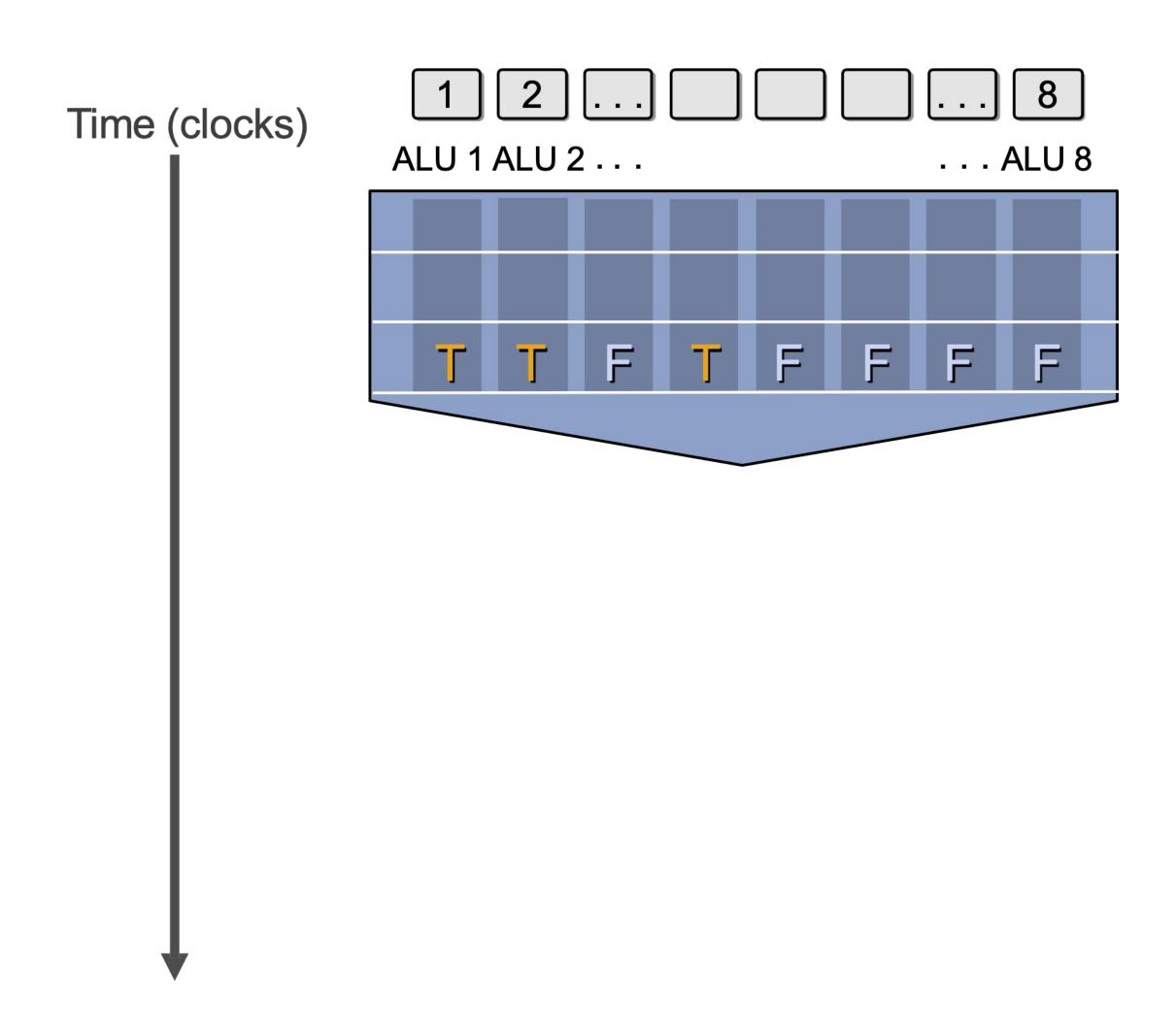
### What about Branches?



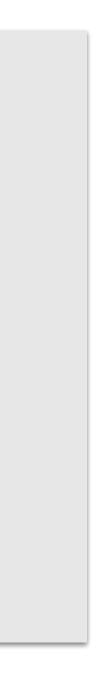
<unconditional shader code>
if (x > 0) {
 y = pow(x, exp);
 y \*= Ks;
 refl = y + Ka;
} else {
 x = 0;
 refl = Ka;
}



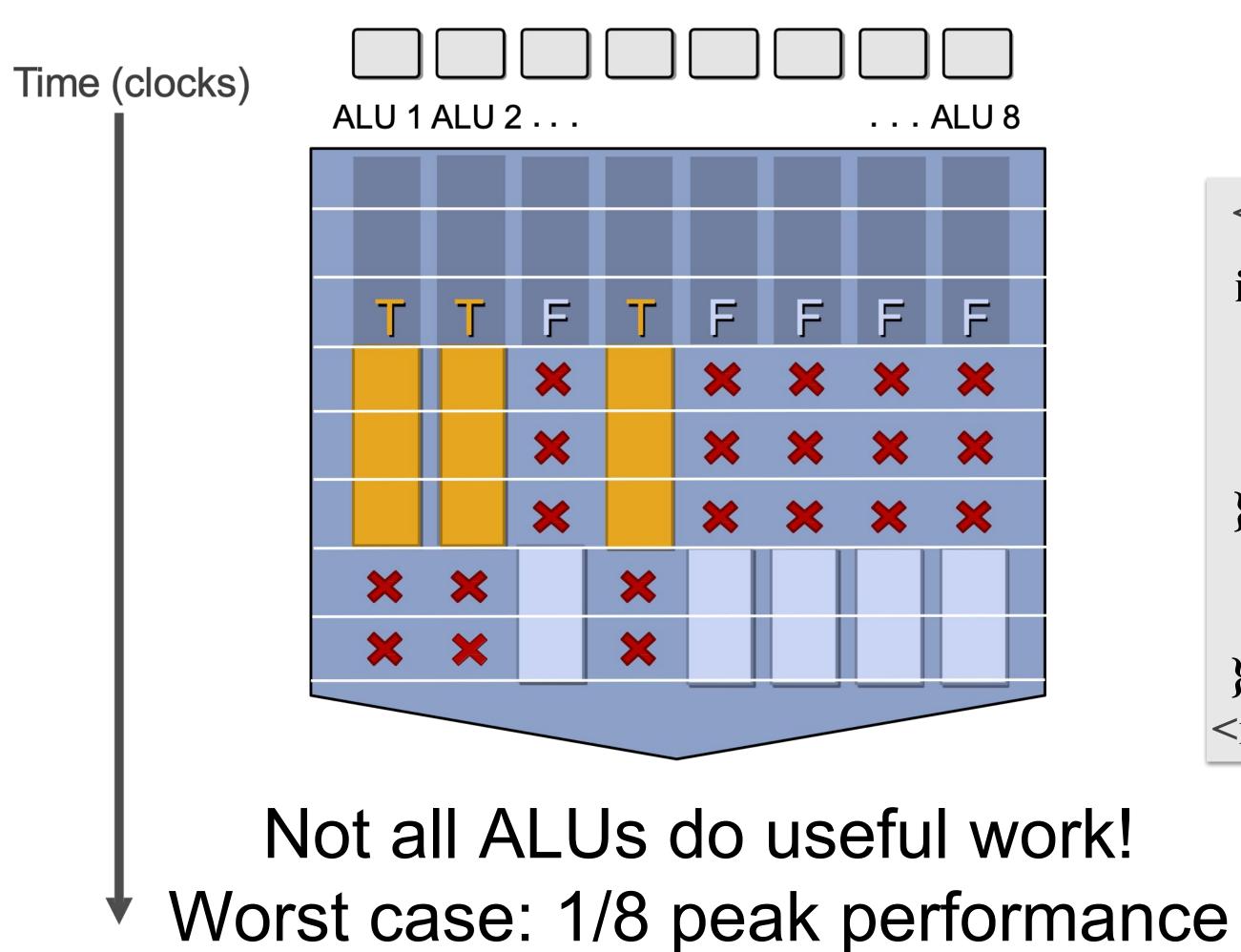
### What about Branches?

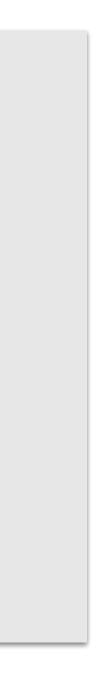


<unconditional shader code>
if (x > 0) {
 y = pow(x, exp);
 y \*= Ks;
 refl = y + Ka;
} else {
 x = 0;
 refl = Ka;
}



## What about Branches?





# Terminology

- Instruction stream coherence ("coherent execution")
  - Same instruction sequence applies to all elements operated upon simultaneously
  - Coherent execution is necessary for efficient use of SIMD processing resources
  - Coherent execution IS NOT necessary for efficient parallelization across cores, since each core has the capability to fetch/decode a different instruction stream
- "Divergent" execution
  - A lack of instruction stream coherence

## SIMD Execution on Modern GPUs

- "Implicit SIMD"
  - Compiler generates a scalar binary (scalar as opposed to vector instructions)
  - But N instances of the program are \*always running\* together on the processor i.e., execute(my\_function, N) // execute my\_function N times
  - <u>Hardware (not compiler)</u> is responsible for simultaneously <u>executing</u> the same instruction on different data in SIMD ALUs
- SIMD width in practice
  - *32* on NVIDIA GPUs (a <u>warp</u> of threads) and *64* on AMD GPUs (wavefront)
    <u>Divergence</u> can be a big issue (poorly written code might execute at 1/32 the peak
  - <u>Divergence</u> can be a big issue (poo capability of the machine!)

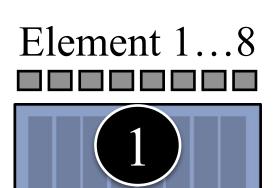
### Dealing with Stalls on In-order Cores

- Stalls occur when a core cannot run the next instruction because of a <u>dependency</u> on a previous long-latency operation
- We've removed fancy logic that helps avoid stalls
  - No more out-of-order execution to exploit instruction-level parallelism (ILP)
  - Traditional cache doesn't always help since a lot of workloads are streaming data
- But, we have a LOT of parallel work. Idea #3: Interleave processing of many warps on a single core to avoid

## stalls caused by high-latency operations

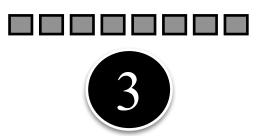
# Hiding Stalls

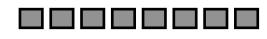
### Time (clock cycles)



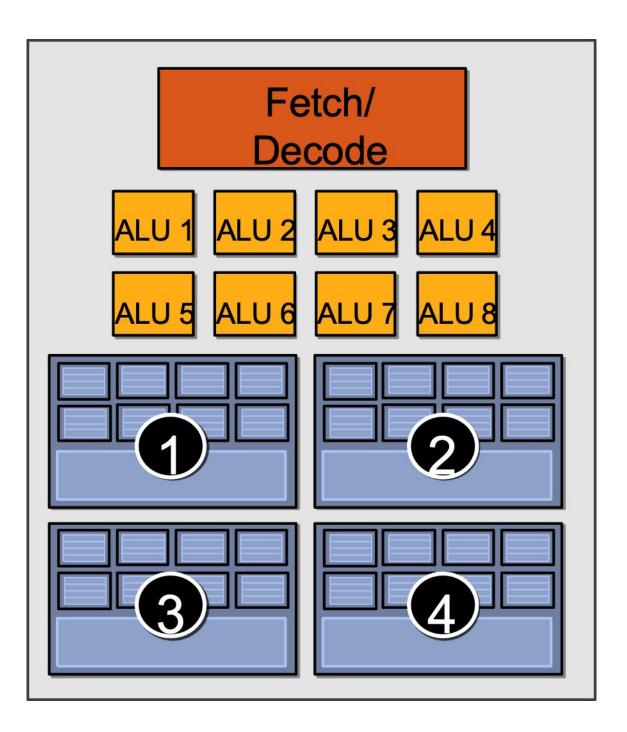


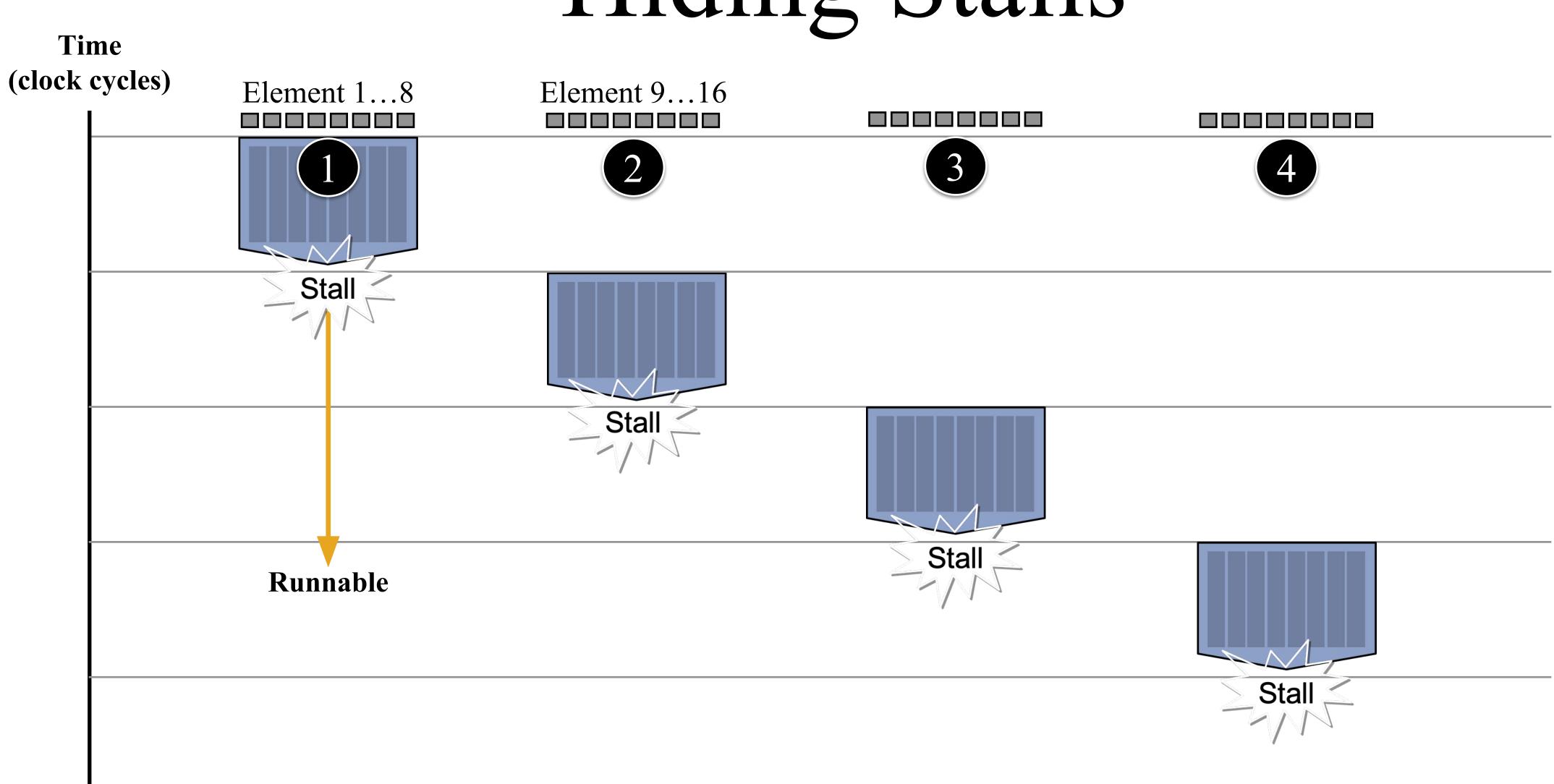




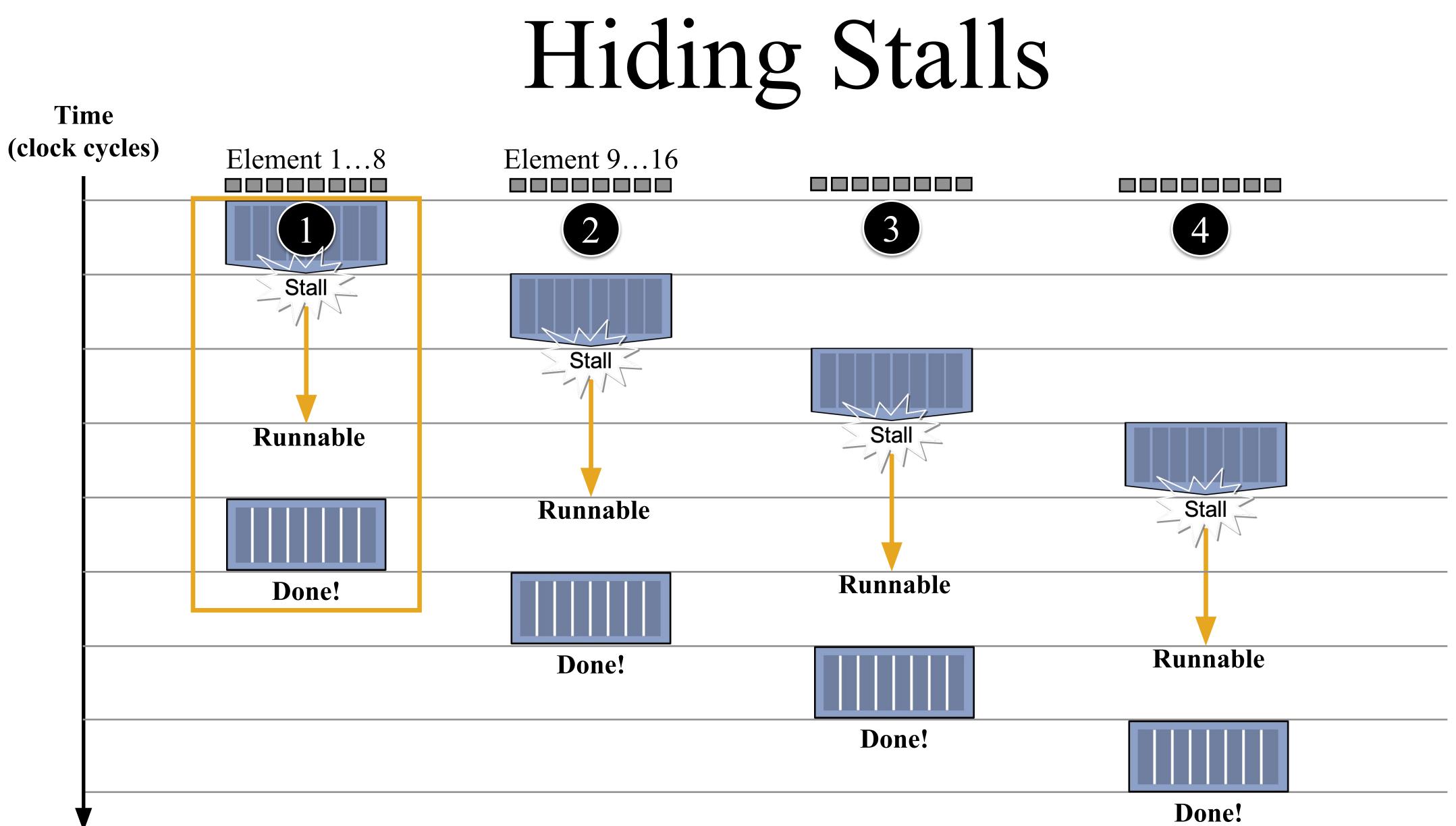


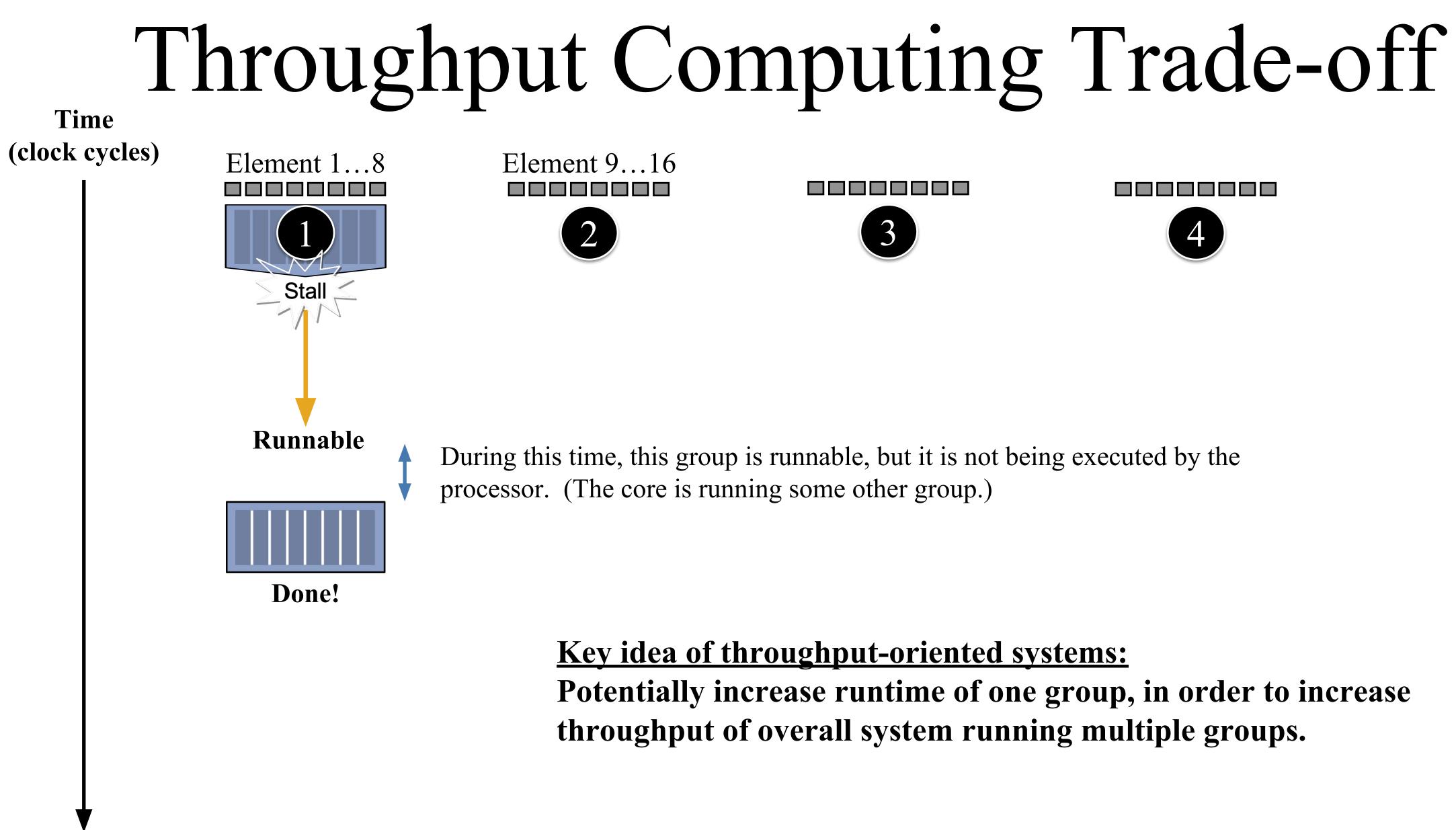






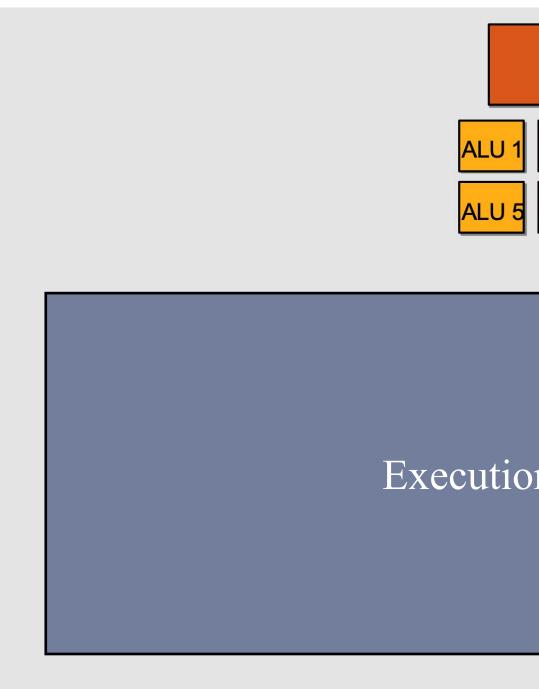
# Hiding Stalls





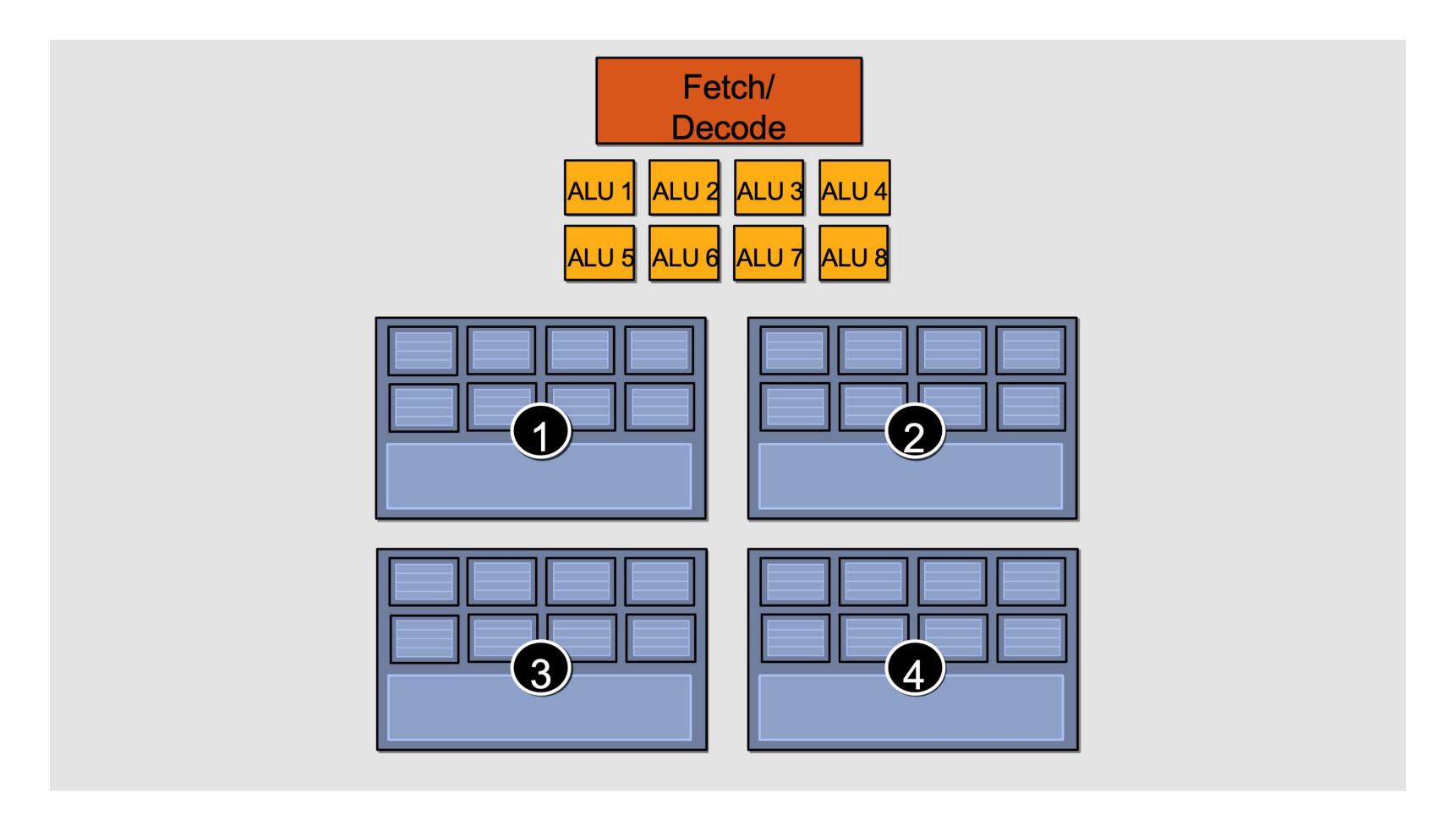
# Storing Execution Contexts

- Consider on-chip storage of execution contexts <u>a finite resource</u>
- Resource consumption of each thread group is program-dependent

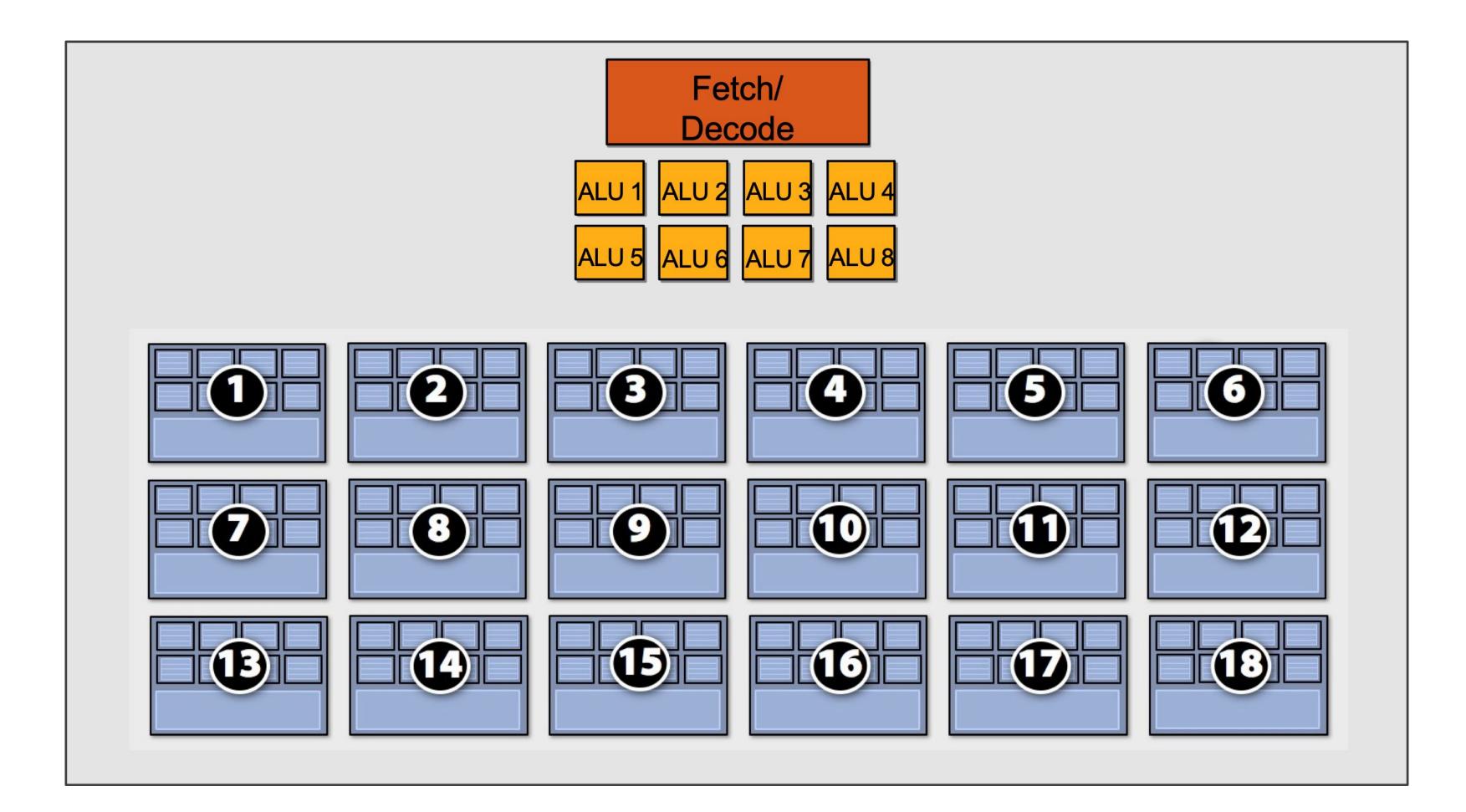


| Fetch/<br>DecodeALU 2ALU 3ALU 4ALU 6ALU 7ALU 8 |  |
|------------------------------------------------|--|
| on Context Storage                             |  |

### Four Large Contexts (Low Latency Hiding)



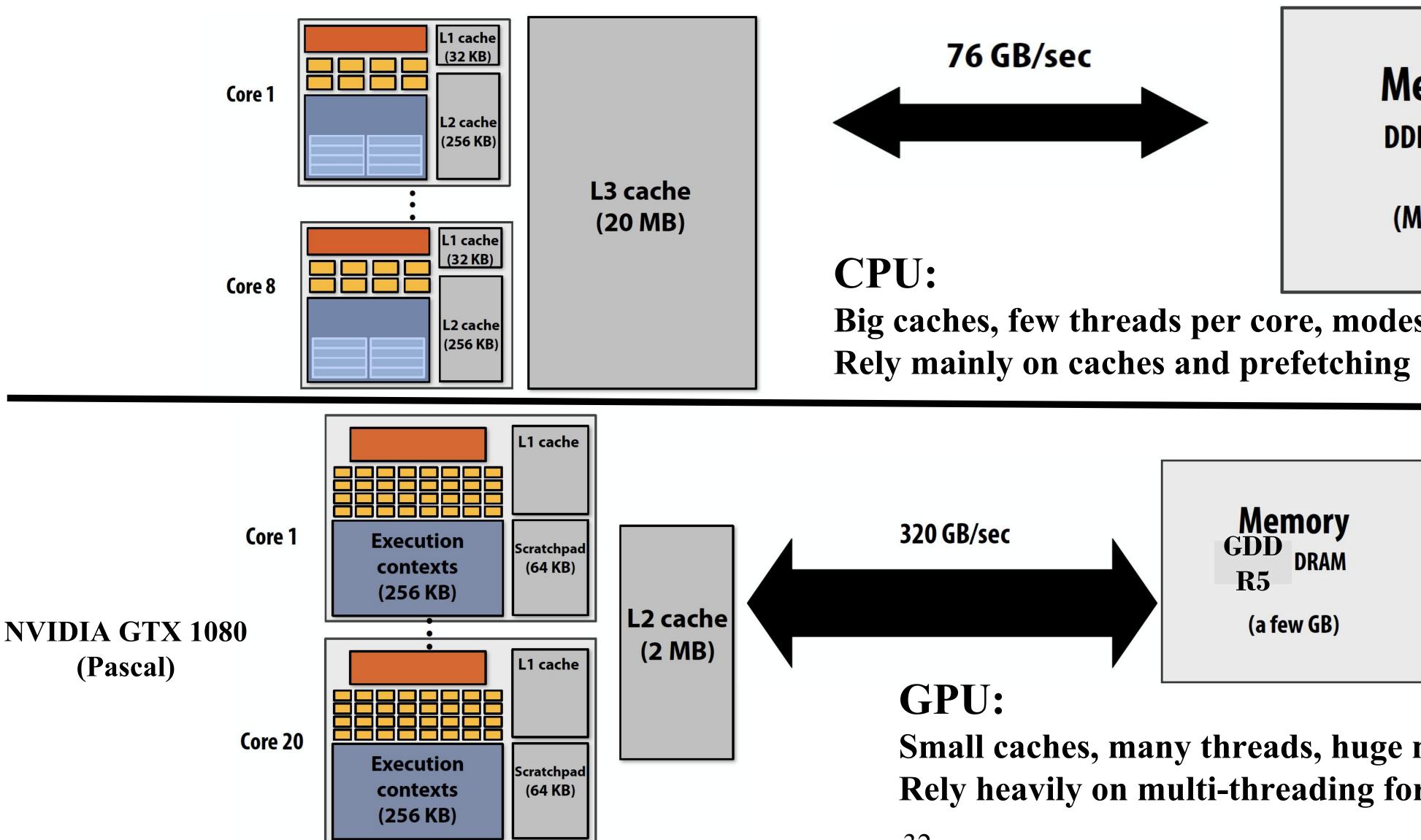
# Eighteen Small Contexts (High Latency Hiding)



# Summary: Three Key Ideas

- 1. Use many "slimmed down cores" to run in parallel
- 2. Pack cores full of ALUs (by sharing instruction stream on multiple data)
- 3. Avoid latency stalls by interleaving execution of many groups of threads
  - When one group stalls, work on another group

### CPU v.s. GPU Memory Hierarchies



Memory **DDR4 DRAM** 

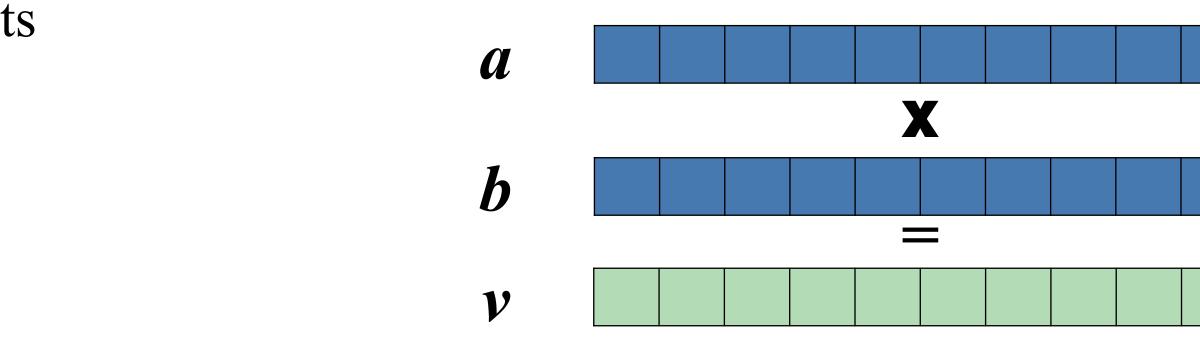
(Many GB)

**Big caches, few threads per core, modest memory BW** 

Small caches, many threads, huge memory BW **Rely heavily on multi-threading for performance** 

- Consider element-wise multiplication of two vectors **a** and **b**
- Assume vectors contain millions of elements
  - Load input *a*[i]
  - Load input **b**[i]
  - Compute  $a[i] \times b[i]$
  - Store result into v[i]
- Three memory operations (12 bytes) for every MUL
- NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz)

### Thought Experiment



### • Need ~45 'FB/sec of bandwidth to keep functional units busy (only have 320 GB/sec) (3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will exhibit ~3% efficiency on this computation)





### Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up. No amount of latency hiding helps this.

**Overcoming bandwidth limits are a common challenge for application developers on throughput-optimized systems.** 

## Bandwidth is a Critical Resource

Performant parallel programs will:

- Organize computation to fetch data from memory less often
  - Reuse data previously loaded by the same thread
  - Share data across threads through scratchpad (inter-thread cooperation)
  - Access contiguous memory within the same warp (hardware managed memory coalescing)
- Request data less often (instead, do more arithmetic: it's "free")
  - Useful term: "arithmetic intensity" ratio of math operations to data access operations in an instruction stream
  - Main point: programs must have high arithmetic intensity to utilize modern processors efficiently

# Memory Spaces in GPU

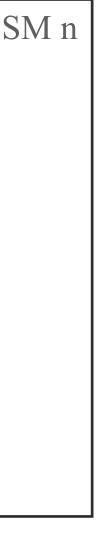
| On-chip:                                |                      |
|-----------------------------------------|----------------------|
| - Register file                         |                      |
| - Usage determined by compiler          | <b>Register File</b> |
| - Spills go to local memory             |                      |
| - Shared memory, i.e. scratchpad        | Per <u>th</u>        |
| - Programmer managed                    |                      |
| - Bank conflicts                        |                      |
| off-chip:                               |                      |
| - L2 cache                              |                      |
| - Bandwidth filter for DRAM rather than |                      |
| reducing latency as in CPUs             |                      |
| - Device memory (DRAM)                  |                      |
| - Several spaces: global memory,        |                      |
| texture memory, local memory            |                      |

- Different spaces have different caching policies

|                     | Compute Cores SM 0                             |                                              | SM 1 | S |     |
|---------------------|------------------------------------------------|----------------------------------------------|------|---|-----|
| ele (fast)<br>hread | Shared Memory (med)<br>Per <u>thread block</u> | L1 Cache (Slow)<br>All <u>resident</u> threa | ads  |   | ••• |
|                     |                                                |                                              |      |   | 1   |

L2 Cache (slow+)

**Device Memory (slow++)** 







### Modern GPU Architecture (Volta 2017)

### 21B transistors 815 mm<sup>2</sup>

### 80 SM 5120 CUDA Cores 640 Tensor Cores

16/32 GB HBM2 900 GB/s HBM2 300 GB/s NVLink



\*full GV100 chip contains 84 SMs



### **<u>GPUs and the Future of Parallel Computing</u>** Steve Keckler et al., IEEE Micro 2011

Due Nov. 11



### CSC 2224: Parallel Computer **Architecture and Programming GPU Architecture: Introduction**

The content of this lecture is adapted from the slides of Kayvon Fatahalian (Stanford), Olivier Giroux and Luke Durant (Nvidia), Tor Aamodt (UBC) and Edited by: Serina Tan

Prof. Gennady Pekhimenko University of Toronto Fall 2019