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What is a GPU?
• GPU = Graphics Processing Unit

– Accelerator for raster based graphics (OpenGL, DirectX)
– Highly programmable (Turing complete) 
– Commodity hardware 
– 100’s of ALUs;  10’s of 1000s of concurrent threads

3
NVIDIA Volta: V100



The GPU is Ubiquitous

4 [APU13 keynote]
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“Early” GPU History
– 1981:  IBM PC Monochrome Display Adapter (2D)
– 1996:  3D graphics (e.g., 3dfx Voodoo)
– 1999:  register combiner (NVIDIA GeForce 256)
– 2001:  programmable shaders (NVIDIA GeForce 3)
– 2002:  floating-point (ATI Radeon 9700)
– 2005:  unified shaders (ATI R520 in Xbox 360)
– 2006:  compute (NVIDIA GeForce 8800)
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Why use a GPU for computing?
• GPU uses larger fraction of silicon for computation than CPU.  

• At peak performance GPU uses order of magnitude less energy per operation than 
CPU.
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CPU
2nJ/op

GPU
200pJ/op

Rewrite 
Application

Order of Magnitude 
More Energy Efficient

However….
Application must perform well



Agenda
• Three key ideas that make GPUs run fast

• GPU memory hierarchy

• Closer look at a modern GPU architecture (Nvidia’s Volta)

• Memory: higher bandwidth, larger capacity

• Compute: application-specific hardware
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Why GPUs Run Fast?
• Three key ideas behind how modern GPU processing cores run code

• Knowing these concepts will help you:

1. Understand GPU core designs

2. Optimize performance of your parallel programs

3. Gain intuition about what workloads might benefit from such a parallel 

architecture
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Example Program: Vector Multiply-Add
• Compute v = a ∙ b + c (a, b, c and v are vectors with a length of N)
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void mul_add (int N, float* a, float* b, float* c, float* v) {
for (int i = 0; i < N; i++) {

v[i] = a[i] * b[i] + c[i]
} 

} 



Single-core CPU Execution

1
0

mov R1, 0
START:
ld R2, a[R1]
ld R3, b[R1] 
ld R4, c[R1] 
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N



Single-core CPU Execution

1
1

… Instruction
Flow

madd stalled, 
jump to the next 

independent instruction

Can also be executed 
out-of-order 

through register renaming

mov R1, 0
START:

ld R2, a[R1]
ld R3, b[R1] 
ld R4, c[R1] 
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

START:
ld R2, a[R1]
ld R3, b[R1] 
ld R4, c[R1] 
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N



Single-core CPU Execution

1
2

… Instruction
Flow

mov R1, 0
START:

ld R2, a[R1]
ld R3, b[R1] 
ld R4, c[R1] 
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

START:
ld R2, a[R1]
ld R3, b[R1] 
ld R4, c[R1] 
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1
bra START if R1 < N

But what if we tell the hardware 
these two blocks can be executed 

in parallel to begin with?



Slimming Down
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Idea #1:
Use increasing transistor count to add 
more cores to the processor

… rather than use transistors to increase 
sophistication of processor logic that 
accelerates a single instruction stream (e.g., 
out-of-order and speculative operations)



Two cores (Two Elements in Parallel)
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START:
ld R2, a[R1]
ld R3, b[R1] 
ld R4, c[R1] 
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1

START:
ld R2, a[R1]
ld R3, b[R1] 
ld R4, c[R1] 
madd R5, R2, R3, R4
st R5, v[R1]
add R1, R1, 1

Element x

Result x

Element y

Result y



Sixteen Cores
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16 cores = 16 simultaneous instruction streams



Instruction Stream Sharing
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Idea #2:
Amortize cost/complexity of managing an instruction 
stream across many ALUs

SIMD processing!



128 Elements in Parallel
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16 cores = 16 simultaneous instruction streams16 cores 𝘅 8 ALUs/core = 128 ALUs



What about Branches?
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<unconditional  shader  code>
if  (x  >  0)  {

y  =  pow(x,  exp);  
y  *=  Ks;
refl  =  y  +  Ka;

}  else  {
x  =  0;
refl  =  Ka;

}
<resume  unconditional  shader  code>



<unconditional  shader  code>
if  (x  >  0)  {

y  =  pow(x,  exp);  
y  *=  Ks;
refl  =  y  +  Ka;

}  else  {
x  =  0;
refl  =  Ka;

}
<resume  unconditional  shader  code>

What about Branches?
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<unconditional  shader  code>
if  (x  >  0)  {

y  =  pow(x,  exp);  
y  *=  Ks;
refl  =  y  +  Ka;

}  else  {
x  =  0;
refl  =  Ka;

}
<resume  unconditional  shader  code>

What about Branches?
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Not all ALUs do useful work!
Worst case: 1/8 peak performance



Terminology
• Instruction stream coherence (“coherent execution”)

• Same instruction sequence applies to all elements operated upon 
simultaneously

• Coherent execution is necessary for efficient use of SIMD processing 
resources

• Coherent execution IS NOT necessary for efficient parallelization 
across cores, since each core has the capability to fetch/decode a 
different instruction stream

• “Divergent” execution
• A lack of instruction stream coherence
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SIMD Execution on Modern GPUs
• “Implicit SIMD”

• Compiler generates a scalar binary (scalar as opposed to vector instructions)
• But N instances of the program are *always running* together on the processor 

i.e., execute(my_function, N) // execute my_function N times
• Hardware (not compiler) is responsible for simultaneously executing the same 

instruction on different data in SIMD ALUs
• SIMD width in practice

• 32 on NVIDIA GPUs (a warp of threads) and 64 on AMD GPUs (wavefront)
• Divergence can be a big issue (poorly written code might execute at 1/32 the peak 

capability of the machine!)
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Dealing with Stalls on In-order Cores
• Stalls occur when a core cannot run the next instruction because of a dependency 

on a previous long-latency operation 

• We’ve removed fancy logic that helps avoid stalls

• No more out-of-order execution to exploit instruction-level parallelism (ILP)

• Traditional cache doesn’t always help since a lot of workloads are streaming 
data

• But, we have a LOT of parallel work…
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Idea #3: Interleave processing of many warps on a single core to avoid 
stalls caused by high-latency operations



Hiding Stalls
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Element 1…8 Element 9…16

1 2 3 4

Time 
(clock cycles)



Hiding Stalls

25

Time 
(clock cycles) Element 1…8 Element 9…16

1 2 3 4

Runnable



Hiding Stalls
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Time 
(clock cycles) Element 1…8 Element 9…16

1 2 3 4

Runnable

Runnable

Runnable

Runnable

Done!

Done!

Done!

Done!



Throughput Computing Trade-off
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Time 
(clock cycles) Element 1…8 Element 9…16

1 2 3 4

Runnable

Done!

Key idea of throughput-oriented systems:
Potentially increase runtime of one group, in order to increase 
throughput of overall system running multiple groups.

During this time, this group is runnable, but it is not being executed by the 
processor.  (The core is running some other group.)



Storing Execution Contexts
• Consider on-chip storage of execution contexts a finite resource

• Resource consumption of each thread group is program-dependent
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Execution Context Storage



Four Large Contexts (Low Latency Hiding)
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Eighteen Small Contexts (High Latency Hiding)
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Summary: Three Key Ideas
1. Use many “slimmed down cores” to run in parallel

2. Pack cores full of ALUs (by sharing instruction stream on multiple data)

3. Avoid latency stalls by interleaving execution of many groups of  threads

• When one group stalls, work on another group
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CPU v.s. GPU Memory Hierarchies
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CPU:
Big caches, few threads per core, modest memory BW
Rely mainly on caches and prefetching

NVIDIA GTX 1080 
(Pascal)

GPU:
Small caches, many threads, huge memory BW
Rely heavily on multi-threading for performance

GDD
R5



Thought Experiment
• Consider element-wise multiplication of two vectors a and b

• Assume vectors contain millions of elements
• Load input a[i]

• Load input b[i]

• Compute a[i] 𝘅 b[i]

• Store result into v[i]

• Three memory operations (12 bytes) for every MUL

• NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz)

• Need ~45 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)
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a

b

v

𝘅
=

<1% GPU efficiency… but 4.2x faster than eight-core CPU in lab!
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will exhibit ~3% efficiency on 

this computation)



Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.
No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for
application developers on throughput-optimized systems.



Bandwidth is a Critical Resource
Performant parallel programs will:
• Organize computation to fetch data from memory less often

• Reuse data previously loaded by the same thread

• Share data across threads through scratchpad (inter-thread cooperation)

• Access contiguous memory within the same warp (hardware managed memory 
coalescing)

• Request data less often (instead, do more arithmetic: it’s “free”)

• Useful term: “arithmetic intensity” — ratio of math operations to data access 
operations in an instruction stream

• Main point: programs must have high arithmetic intensity to utilize modern 
processors efficiently
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Memory Spaces in GPU
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SM 1

…

SM n
SM 0

Compute Cores

Register File (fast) Shared Memory (med)

Device Memory (slow++)

Per thread Per thread block

L1 Cache (Slow)

All resident threads

L2 Cache (slow+)

On-chip:
- Register file 

- Usage determined by compiler
- Spills go to local memory

- Shared memory, i.e. scratchpad
- Programmer managed
- Bank conflicts

- L1 cacheOff-chip:
- L2 cache

- Bandwidth filter for DRAM rather than
reducing latency as in CPUs

- Device memory (DRAM)
- Several spaces: global memory, 

texture memory, local memory
- Different spaces have different caching policies



21B transistors  
815 mm2

80 SM
5120 CUDA Cores
640 Tensor Cores

16/32 GB HBM2
900 GB/s HBM2

300 GB/s NVLink
*full GV100 chip contains 84 SMs

Modern GPU Architecture (Volta 2017)
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Review #7
GPUs and the Future of Parallel Computing
Steve Keckler et al., IEEE Micro 2011

Due Nov. 11
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https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
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